Excavations in northern Honduras have produced evidence of initial village life that is among the earliest case documented in Mesoamerica. Settlement beginning prior to 1000 B.C., the production of sophisticated pottery by 600 B.C., and incorporation in economic exchange networks extending into Guatemala and Mexico by 1000-800 B.C. (calendar ages), are all consistent with patterns recorded in the Gulf Coast, Central Highlands, and Pacific Coast of Mexico. Supported by a suite of 31 radiocarbon dates, these findings overturn traditional models that viewed Honduras as an underdeveloped periphery receiving delayed influences from Mexican centers.

Granjas de las excavaciones que se han realizado en el norte de Honduras se han recuperado evidencias de los orígenes de la vida aldeana en la región, que se cuentan entre los casos más tempranos en Mesoamérica. Los inicios de las asentamientos en fechas anteriores a 1000 a.C., la producción de cerámica elaborada hacia 600 a.C., y la incorporación en redes de intercambio económico que llegaban hasta Guatemala y México a finales del 1100-900 a.C. (calendario coloquial), son consistentes con los patrones que se han reportado en el caso del Golfo de México, el altiplano central mexicano y la costa del Pacífico, en particular el Soconusco. Con base en la población estratigráfica de los artefactos y 31 fechas de radiocarbono, se definen cinco fases tempranas que abarcan desde hace del período Arcaico (Saez), el Formación Temporada (Barahona, Quialte, Chontales) y principios del Formativo Medio (Papalo), con esta fundamento, se cuanta con evidencias contrarias a los modelos tradicionales, en los que se consideraba que Honduras era un periférico subdesarrollado entre centros ubicados en México donde llegaban con retrazo influencias centrales.

In contrast, with the exception of isolated reports of early occupations in sites scattered along the Pacific Coast in Guatemala and El Salvador (Amroy 1995; Blake et al. 1995), no comparable body of information has been developed for eastern Mesoamerica, the region east of the Isthmus of Tehuantepec where societies of the Classic Maya world later took shape. With the reevaluation of the extremely early dates reported for Cacilo, a site located in the Maya lowlands of Belize (Andrews and Hammond 1990), ceramic chronologies for eastern Mesoamerica extend back only to approximately 1200 B.C. (Shaurer 1989).

With excavations beginning in 1994 at Puerto Escandón (CR-372), a site near the Caribbean coast of Honduras (Figure 1), we have produced the first documented continuous sequence of early occupation in eastern Mesoamerica. At Puerto Escandón, stratified deposits 3.5 meters deep have now yielded a suite

Alabama
THE UNIVERSITY OF ALABAMA PRESS
university (773) 345-3190 ext. 860-2307 - fax: (773) 345-3425

Classics in
Southeastern Archaeology
Stephen Williams, Series Editor
Method and Theory in American Archaeology
GORDON W. WILLEY AND PHILIP PHILIPS
EDITED AND WITH AN INTRODUCTION BY
R. LEE LYMAN AND MICHAEL J. O'BRIEN
NEW FOREWORD BY GORDON W. WILLEY
This classic provides the framework for the development of American archaeology during the last half of the 20th century.
"This newly edited edition will give the large number of new millennium archaeologists a chance to read and own a pivotal work in American archaeological theory."
—Stephen Williams, Harvard University
ISBN 0-8173-1086-4 $29.95 paper

The Southern and Central Alabama Expeditions
of Clarence Bloomfield Moore
EDITED AND WITH AN INTRODUCTION BY
CRAG T. SHELTON JR.
Covering 19 years of excavations, this volume provides an invaluable collection of Moore's pioneering archaeological investigations along Alabama's waterways.
"No one knows more about the archaeology of the Alabama River than does Craig Shelton. His edition of Moore's writings will entertain and enlighten all those interested in Alabama's prehistoric past."
—Gregory A. Waselkos, University of South Alabama
ISBN 0-8173-1019-3 $19.95 paper

Method and Theory in American Archaeology
GORDON W. WILLEY AND PHILIP PHILIPS
EDITED AND WITH AN INTRODUCTION BY
R. LEE LYMAN AND MICHAEL J. O'BRIEN
NEW FOREWORD BY GORDON W. WILLEY
This classic provides the framework for the development of American archaeology during the last half of the 20th century.
"This newly edited edition will give the large number of new millennium archaeologists a chance to read and own a pivotal work in American archaeological theory."
—Stephen Williams, Harvard University
ISBN 0-8173-1086-4 $29.95 paper

The National Research Council Archaeological Conferences of 1929, 1932, and 1935
EDITED BY MICHAEL J. O'BRIEN AND R. LEE LYMAN
This collection elucidates the key role played by the National Research Council seminars, reports, and pamphlets in setting an agenda that guided American archaeology in the 20th century.
"These documents have long been out of print and they mark a period of 'rewind' for eastern archaeology in the crucial post-World War 1 years."
—Stephen Williams, Harvard University
ISBN 0-8173-1064-3 $34.95 paper

Beginning of Village Life in Eastern Mesoamerica
Rosemary A. Joyce and John S. Henderson

Excavations in several locations in Mexico have produced significant information about early stages of the development of village life in Mesoamerica. Research at sites on Mexico's Gulf Coast (Cue and Delio 1988; Grove 1997; Rust and Sherrill 1988), Central Highlands (Flannery and Marcus 1994; Niederberger 1974), and Pacific Coast Soconusco region (Blake et al. 1995; Blake and Clark 1993; Clark and Gossen 1995; Levent 1997,1998), has produced consistent chronologies that place the transition to settled village life between 5000 and 1800 B.C. In each of these regions, early villages are marked by the construction of perishable houses, the use of pottery vessels, reliance on agriculture for subsistence, and participation in economic exchange networks, especially for the acquisition of obsidian, the volcanic glass that provided the fundamental raw material on which Mesoamerican societies relied for sharp-cutting tools (Voorhies 1996a, 1996b).

In contrast, with the exception of isolated reports of early occupations in sites scattered along the Pacific Coast in Guatemala and El Salvador (Amroy 1995; Blake et al. 1995), no comparable body of information has been developed for eastern Mesoamerica, the region east of the Isthmus of Tehuantepec where societies of the Classic Maya world later took shape. With the reevaluation of the extremely early dates reported for Cacilo, a site located in the Maya lowlands of Belize (Andrews and Hammond 1990), ceramic chronologies for eastern Mesoamerica extend back only to approximately 1200 B.C. (Shaurer 1989).

With excavations beginning in 1994 at Puerto Escandón (CR-372), a site near the Caribbean coast of Honduras (Figure 1), we have produced the first documented continuous sequence of early occupation in eastern Mesoamerica. At Puerto Escandón, stratified deposits 3.5 meters deep have now yielded a suite

Begins the Agenda for American Archaeology

If you wish to be notified as new volumes in archaeology and anthropology are published, please send your e-mail address to begin@press.edu.
of 11 radiocarbon determinations that provide a basis for comparison with Mexican Pacific coast sequences beginning before 1000 B.C. (calendar age).

Puerto Escuiníado

The Puerto Escuiníado site consisted originally of four extensive, low, earthen mounds located on a tributary of the Chamelecon River, the smaller of two rivers forming the lower Ulúa Valley in Honduras. Excavations at Puerto Escuiníado began as an effort to document the nature of the site before it was destroyed by a housing development. The sequence of radiocarbon dates reported here comes from one of the two earthen mounds that have been the focus of our excavations since 1994.

Prior to this work, earth-moving for construction had removed more than a meter of deposit from the mound. The face of the bulldozer cut through this mound showed that these deposits consisted of a sequence of floors, burials, and pit features, some of which were associated with pottery of types produced during the Late and Terminal Classic periods (ca. A.D. 450–1000). Our initial excavations documented the foundations of a cluster of rectangular buildings, with 20 associated burials placed adjacent to building foundations and in abandoned pits. This residential occupation of the mound can be dated to the earliest part of the Ulúa phase (ca. A.D. 450–650) by associated pottery, particularly the assemblages preserved in filled, abandoned pits.

The sediments into which the foundation walls, burials, and pits of the early Ulúa period occupation were dug proved on excavation to date to the previously identified Middle Formative Playa phase (ca. 900–400 B.C.). These Playa phase deposits capped a long sequence of remains dating to the Early Formative (ca. 1600–900 B.C.), a period previously undocumented in the region. The continuous nature of these Formative period deposits, including the presence at the base of the deposit of a component lacking pottery, makes the radiocarbon dates reported here the first evidence from eastern Mesoamerica that is comparable to Mexican sequences of Ancestral to Early Formative period occupations.

Depositional Sequence

Excavation of a 2 m by 2 m unit to sterile soil provided the basis for identifying the depositional sequence for the Formative period. Additional wide-area excavation of selected Formative period features provided information about the use of the area. Pottery recovered from the stratigraphic units was assigned to types based on a combination of original vessel shape, characteristics of the clay mixture, and treatment of the surface of the vessels. Our preliminary ceramic analysis for the Early Formative is based on detailed recording of a stratified sample of more than 7,000 sherds. This compares favorably to the stratified sherdus used to anchor the authoritative sequence for Early Formative Oxtaca, which contained approximately 5,000 sherds (Fleming and Marcus 1994). Although we have not yet completed...
2 m unit reached this level, we suggest that it represents late Archaic use of the area, before pottery was adopted in the region. The majority of the obsidian flakes, produced through percussion, were made from material available from outcrops located within 60 km. A small proportion of the flakes was made from obsidian derived from La Esperanza, in southern Honduras.

Burahona Phase

The Burahona phase is marked by the earliest pottery yet identified at the site. Burahona deposits consist of a series of surfaces covered by thin layers of debris and riverine sediments. Post-holes from construction of perishable buildings were encountered on several of these surfaces. Fragments of bone, shell, chipped stone, and pottery were contained in the debris between surfaces.

The early pottery (Figures 2 and 3) consists of finely made, thin-walled vessels in the shape of small open bowls and closed-mouth bowls (recon-tours), with elaborate decoration, including incision, dentate-stamping, and painting in red and black. Burahona-phase pottery closely resembles that of the Barra phase, the earliest ceramic period in Pacific coast Soconusco (Blake 1991; Clark and Goosen 1995; Lesure 1996; Love 1990, 1991).

Local obsidian sources and the La Esperanza source continued to be employed. A small number of blades produced from local obsidian document a change in technology of production. Following the Burahona phase, obsidian from La Esperanza ceased to be used at Puerto Escondido until sometime after A.D. 250.

Ocotallo Phase

Ocotallo-phase deposits continue the sequence of surfaces and thin layers of debris. In addition to post-holes, other remains of perishable constructions from the Ocotallo phase include burned areas, or hearths. Only obsidian from local sources has been identified, in the form of percussion flakes and small blades.

Ocotallo-phase deposits contained pottery (Figures 3 and 4) without the most elaborate decorative techniques, such as dentate-stamping, found on earlier Burahona-phase pottery. Open bowls, teocuites, and red painting continued to be popular. New pottery forms included thick-walled jars decorated by polishing vessel surfaces with a narrow tool in lines and in linear patterns. Relationships with Soconusco and Ocotallo-phase pottery from Soconusco (Blake 1991; Cox 1964; Cox and Flannery 1967; Demarest 1987; Lesure 1996; Love 1990, 1991) are still strong. Further east, the Metalli Group of the Ixion phase (1450–1200 B.C.) at El Camen in coastal El Salvador employs pattern-burnished techniques, and motifs of the Puerto Escondido material, and pat-
Chontepa Phase deposits are discussed in detail below. The pottery complex essentially includes a coarse paste group that continues the pattern-burnished tradition established in the preceding phase (Figure 5), and a fine-paste group in which new modes of vessel form and decoration, including differential firing (Figure 6) and polished black and gray surfaces with incised and carved motifs on flat-bottom, flaring-wall bowls (Figures 7–11), were executed.

Plaza Phase

The construction of the stepped earthen platform marks the beginning in the depositional sequence of the Middle Formative Phyla phase. Traces of the plastered surface of this platform, and footing trenches for two terraces, were identified. Set in the terraces of the platform were at least two human burials, one containing jade costume ornaments and two ground-stone objects. Additional Phyla-phase deposits covering the surface of this stepped terrace were disturbed by the construction of pits, burials, and wall foundations in the early Ulinha phase, and were cut in places by modern building operations.

Radiocarbon Dates

Eleven samples of wood charcoal from this depositional sequence were submitted to Beta Analytic for radiometric dating (Table 1). All but one were analyzed using direct atomic counting by accelerator mass spectrometry (AMS). One small sample (Beta-129130) was analyzed by standard radiometric methods with extended counting time.

The order of the conventional radiocarbon ages is consistent with the stratigraphic position of the carbon samples on which they are based, with one exception. Beta-129130 was collected from a Middle Formative mixed fill but produced a much earlier than expected date. Since the depositional sequence was marked by repeated reconstructions of perishable structures, including ancient excavations of holes for perishable posts, such upward mixing of carbon is not unexpected. The date derived correlates with that of Beta-129129, and we suggest that the carbon sampled for Beta-129130 was moved upward through ancient excavation from the more deeply buried levels that yielded Beta-129129.
The calibrated dates (Figure 12) establish that the depositional sequence at Puerto Escondido is parallel to, and approximately contemporary with, the earliest evidence for settled village life in Mesoamerica (Figure 13). The initial Barahona phase (1600–1400 B.C.); radiocarbon samples Beta-129129, Beta-129130 can be compared to the Birra phase of Soconusco, which also saw the production and use of thin-walled, elaborately decorated bowls and comales (Blake et al. 1995; Blake and Clark 1993; Clark and Gosser 1995; Leslie 1998). The Ocotalillo phase (1400–1100 B.C.; Beta-129128, Beta-129132), like the Oco phase of Soconusco, continued the development of early decorated pottery and added larger, coarser vessels. In the Chotepe phase (1100–900 B.C.; Beta-129127, Beta-129131, Beta-129133, Beta-129134, Beta-129135), there is a sharp increase in evidence of participation in external relations of exchange. This is most evident in the presence of blades made from obsidian from the Tlapesque and El Chayal sources. El Chayal obsidian has been identified as a monopoly of communities along the Pacific Coast and in the Gulf Coast of Mexico. Links in the same direction are evident in the adoption of new modes of vessel form and surface treatment during Chotepe phase, discussed further in the following section of this paper. We stress that all evidence indicates that this pottery was manufactured locally in Honduras. Local conformity to standards of vessel shape and decoration indicates knowledge of other, distant, settlements and engagement with them in common social relations. It does not constitute evidence of centralized control by inhabitants of the large Olmec centers of the Gulf Coast (Flannery and Marcus 2000).

The conversion of Chotepe-phase buildings into a single, monumental-scale earth platform at the beginning of the Middle Formative period (ca. 900 B.C.; Beta-129126) is accompanied by the first evidence of the importation of jade to the site, presumably from sources in the Motagua River valley of Guatemala. Debris from working jade formed part of the mixed Middle Formative deposits that buried this structure, indicating that the inhabitants of Puerto Escondido were obtaining raw material, not simply finished products. The most likely trading partner in this exchange was the contemporary early village buried below the Classic Maya city of Copán, in western Honduras (Fash 1985; Garber et al. 1993; Longyear 1969: Rucl et al. 1989; Val and Cheek 1983).

The vessels placed as cached deposits in the Middle Formative platform at Puerto Escondido are formally identical to vessels recovered in burials at Playa de los Muertos, a previously identified village on the Uluá River (Joyce 1992; Kennedy 1986; Popo-
Ceramics provide the largest body of material for a reevaluation of assumptions concerning the participation of northernmost Honduras, and of eastern Mesoamerica in general, in developments that characterized much of Mesoamerica during the period between 1100 and 900 B.C. Early materials from sites such as Playa de Los Muertos, the Guaymel caves, Yarunela, and Copán have long been considered of potential significance in understanding the relations of Honduras to the development of early stratified societies in the Mexican Gulf Coast and in the Mexican Highlands (Camby 1951; Healy 1974; Kennedy 1986; Longyear 1969; Porter 1953; Shazer 1989; Vaillant 1934; Wilby 1969). In the absence of well-documented sequences of chronometric dates for early deposits from the Honduran sites, a relatively conservative perspective gradually came to dominate interpretation, in which Honduras was a backwater that received delayed "influences" from other regions of Mesoamerica during the Formative period. Our results from Puerto Escondido establish the contemporaneity of developments there with those elsewhere in Mesoamerica. This interpretation is both more consistent with data from Honduras and elsewhere, and could account for some anomalies in data noted at other sites.

Figure 10. Chotepe-phase Basilla Yellow-Brown pottery from Puerto Escondido.

Figure 11. Chotepe-phase Fia Metallie Gray pottery from Puerto Escondido.

Pattern-burnished in the Early Formative

Pottery from Chotepe deposits included a group with brown paste and temper derived from crushed rock; bowls and jars in this group often have red slip and/or pattern-burnished decoration (Figure 5). Although never numerically common, pattern-burnished has well-defined chronological placement at Salinas La Blanca. It is described as "virtually restricted to the Cuadros phase, and a good horizon marker" (Coe and Flannery 1967:26). Pattern-burnished continues in low frequencies in early Conchas at Salinas La Blanca and La Victoria (Coe 1961:61-62, 64, 71; Coe and Flannery 1967:55).

Pattern-burnished does not appear to be present farther west than the Pacific Coast of Guatemala. All early reports noted its presence in presumed Early Formative contexts at the Manti Cenote in Yucatan (Yotolol pattern-burnished; Brainerd 1958). This comparison gained additional force with the publication of the Swasey ceramic complex from Cuello, Belize, originally dated to 2000-1500 B.C. There, Duncan Pring (1977) identified an unspecified variety of Yotolol pattern-burnished based on 26 body sherds. Laura Kosakowsky (1987:14-15) later renamed the Swasey complex type Patchacuan pattern-burnished because of the presumed gap of 1,000 years between the two samples. Her description was
Table 1. Radiocarbon samples from Puerto Escondido, Honduras

<table>
<thead>
<tr>
<th>Beta Analytic sample number</th>
<th>Beta 129125</th>
<th>Beta 129132</th>
<th>Beta 129133</th>
<th>Beta 129134</th>
<th>Beta 129135</th>
<th>Beta 129136</th>
<th>Beta 129137</th>
<th>Beta 129138</th>
<th>Beta 129139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated date (2σ range) (BP)</td>
<td>2310 ± 40</td>
<td>2750 ± 50</td>
<td>2290 ± 50</td>
<td>2020 ± 40</td>
<td>1940 ± 40</td>
<td>1920 ± 40</td>
<td>2300 ± 40</td>
<td>1920 ± 40</td>
<td></td>
</tr>
<tr>
<td>Conventional radiocarbon age (3900 BP)</td>
<td>2310</td>
<td>2750</td>
<td>2290</td>
<td>2020</td>
<td>1940</td>
<td>1920</td>
<td>2300</td>
<td>1920</td>
<td></td>
</tr>
</tbody>
</table>

Based on eight body sherds and a single rim sherd. While Poshachen pattern-burnished was rare, it was also quite distinctive, with smooth surfaces decorated with thin pattern-burnished lines, including diagonal cross-hatched fields. The narrow (0.2 cm) width of the pattern-burnished lines matches the fine-line tool-size characteristic of both the Yaxumulca samples and of the larger assemblage from Puerto Escondido. The sole rim is described as a bottle with a pointed lip formed by folding the clay to the exterior, a technique also found at Puerto Escondido. Decoration was confined to the body. Body sherds are described as exhibiting the curvature and thickness of jar or bottle forms. The Poshachen type was limited to the early part of the Swasey depositional sequence, and was not noted in the later Balen complex.

Kosakowsky (1987:14-15), noted, as one of the bases for renaming the type, that E. Wyllys Andrews V did not believe the Swasey materials were actually comparable to the Yotolin type from northern Yucatan. Andrews made his observations as part of a reassessment of early Maya Lowlands pottery complexes, which led him to successfully challenge the proposed early dating of Swasey (Andrews 1990; Andrews and Hammond 1990). Despite their agreement that Swasey did not date as early as originally proposed, Andrews and Hammond differ on the correct dating of Swasey, with Hammond suggesting the early materials—including all the Poshachen pattern-burnished sherds—belong to a terminal Early Formative component placed between 1200-900 B.C. (Andrews 1990:19) argued that the only contextual associations for Yotolin pattern-burnished, at Lojan Cave, were entirely conformable to known Middle Formative complexes in northern Yucatan. Although he preferred to interpret the Yotolin and Poshachen sherds as equivalent, and therefore indicative of Middle Formative age for Swasey, he also allowed for the possibility that the two were distinct, though his grounds (a presumed lack of evidence for bottle forms at Coello) are unacceptable as light of Kosakowsky's description of the type sample.

Pattern-burnished sherds are not sufficiently common at Coello, Mani, or Lojan to suggest they formed a typical product of local manufacture. Kosakowsky's (1987:14-15) general description of the ceramic body of Poshachen differs from every other type described for Swasey and for the later Balen. She notes the presence of crushed mica in some of these sherds. Mica is generally present, apparently as a naturally occurring inclusion, in clays of the lower Uila valley, and is present in the Early Formative ceramics from Puerto Escondido. The rare pattern-burnished sherds found in Swasey complexes at Coello, at the Mani Cave, and in Lojan Cave may represent products of exchange with north coastal Honduras.

Since pattern-burnished continues in the Playa de los Murtos ceramic complexes (Kosakowsky 1980:322) in the same design as defined at Puerto Escondido (Joyce, personal observation of Playa de los Murtos components at the Peabody Museum, Harvard, and from Yoro, Honduras, excavated by Joyce), the Uila valley could have provided a source of these inflow vessels during either time period.

Pattern-burnished is present in Cuadros, Bosun, and Yurumela Early Formative complexes (but not, as Kosakowsky mistakenly suggests, in San Lorenzo complex on the Gulf Coast), and the occurrence of the technique in the Swasey complex is thus consistent with an Early Formative date. Further evidence supports a placement before 800 B.C. for each of these complexes. The Puerto Escondido assemblage shares the pattern-burnished technique and precedes the development of Playa de los Murtos types. The radiocarbon dates discussed below confirm the Early Formative date of pattern-burnished (as well as the complex iconographic motifs of pun-Mesoamerican distribution) at Puerto Escondido. Hoodon and Joyce (1993) have obtained radiocarbon dates supporting assignment of Playa de los Murtos ceramics to the initial Middle Formative, ca. 850-650 B.C., consistent with the external comparisons to Cuadros complex made by Coe (1961).

Chromosome of Olmec-style Ceramic Features in Honduras

Another Chopte-phase pottery group included distinctive new forms and surface treatment techniques, and a new clay mixture that produced a compact paste with abundant small temper particles probably derived from volcanic ash. Veined surfaces, polished but unslipped, are commonly black, gray, brown (Figures 7-11), or have contrasting colors resulting from differential firing (Figure 6). The predominant flat-based, flaring, or cylindrical wall bowls with deeply carved designs, sometimes with additional red pigment—including the St. Andrews cross, a star or diamond, a variant of the "hand-paw" design, and faces modeled on rings—closely resemble vessels usually identified as Olmec in style (Clark 1994; Coe and Dielli 1980; Flannery and Marcus 1994, 2000; Grove 1997; Longyear 1969, Shier 1989). At Chululuba, Tok-phase pottery (ca. 1200-900 B.C.) provides comparisons for several modes from Puerto Escondido, including geometric motifs constructed from nested rectangles and differentially fired bowls, a minority with incised designs. Di-similarities are even more evident, however, with the important pattern-burnished technique apparently unrepresented at Chululuba. More puzzling is the
absence at Chichuapa, despite its later low-relief boulder carvings in Pan-Mesoamerican style, of any of the incised motifs that suggest participation in wider Olmec networks of interaction.

In Honduras, such motifs have been reported from the Cuyamel Caves (Healy 1976) and from the Gordon subcomplex of Copán, to which Viel (1993:33-41, 132-133) assigns an initial Middle Formative date. The Gordon complex is represented by 27 complete vessels from burials in a cemetery and in the cemeteries of the Copán Valley, along with 53 sherds, seven of them diagnostic. Viel aptly reviews the difficulties involved in placing these vessels in comparative context, in the absence of a larger component stemming from refuse deposits. He adopts a conservative position conditioned by the association of these vessels with jade in the Gordon cemetery, although he notes in passing the opinion of David Grove that jade could be found earlier in a region as close to the Motagua source as is Copán (see Bishop and Lange 1993 for evidence that Formative period jades from Mesoamerica originated in the Motagua River valley). The strongest argument for assigning a later date to these materials in Honduras than in other regions was the "peripheral" location of Copán. "Generally, it is considered that the Olmec expansion took place, at least towards Central America, beginning at 900 B.C. In Guatemala, the presence of Olmec traits is diagnostic of the Middle Preclassic" (Viel 1993:133; Joyce's translation, emphasis added). Viel makes the argument more explicit by using the dates proposed for the Jazul complex of Los Nazarenos—at that point the only major focus of Formative Period interaction with Mesoamerica in Honduras—for comparison with Gordon complex. Comparison to Kennedy's proposed dates for Playa de los Muertos, used as additional support for the argument for delayed adoption of these traits, is considered below, and arguments for rejecting her late dating for Playa de los Muertos are offered.

The relevant question is whether sites in Guatemala and Honduras with "Olmec" traits in Middle Formative ceramic complexes are the best or only potential sources of comparison for either the relatively isolated Gonon vessels, for the Cuyamel Caves vessels to which Viel convincingly relates the Gordon materials, or for the newly documented ceramics from Puerto Escobal. Viel (1993:39-41), in support of the Middle Formative placement of the Gordon vessels, draws specific comparisons to the Guatemalan complexes from Salinas La Blanca and Bahía Baratas to the Puerto Escondido. But these motifs are equally lacking in the Middle Formative Conchas-phase ceramics from Salinas La Blanca.

More recent considerations of the archaeology of the Pacific Coast of Guatemala and Chiapas have refined our understanding of the Early to Middle Formative ceramic sequence and inter-regional variation, and they have resulted in new proposed dates for relevant complexes (Blake et al. 1995). For the Mazatlan region of Chiapas, John Clark (Blake et al. 1995; Clark 1994) defined the Motagua tradition, a localized sequence of developments including the use of pottery typologically identifiable with the Cuadros and Jocotla complexes (now dated 1000-900 and 900-850 B.C.; Blake et al. 1995:175-179), as well as earlier Olmec and Barra complex pottery. Included in the suite of vessels typical of the Mazatlan region are a range of flat-based, incised wall bowls with white slipped, differentially fired, and black surfaces incised on the exterior wall or wedge-shaped rim with geometric designs, some of which are schematic versions of widespread Olmec motifs, including the profile "dragon" and St. Andrews cross. Cuadros ceramics identified in the Mazatlan region form the geographically closest documented body of material parallel to the Cuadros-phase ceramic complex from Puerto Escondido. At the same time, the two complexes differ in some significant regards. Although a similar range of neckless and necked jar forms with red slip is found in the two areas, the Mazatlan complexes emphasize punctuation, appliqué, and red linear painted designs not known at Puerto Escondido. Clark (1994:196-199) contrasts Mazatlan Cuadros with the preceding Cherta complex (1100-1000 B.C.; Blake et al. 1995:175-179) with which it significantly overlaps in basic ceramic inventory. Although differentially fired ceramics are part of the Cherta assemblage, Clark notes the absence of the complex symbolic motifs introduced in abundance in subsequent Cuadros. It is precisely these motifs that are generally absent from Cuadros as originally defined at Salinas La Blanca. Demarest (1987:338) had earlier raised concerns about the apparent absence of "Olmecoid" traits in the Cuadros/Jocotal assemblages from the Pacific Coast of Guatemala, associating their appearance after ca. 900 B.C. with the first development of monumental architecture and the appearance of carved-stone monuments at sites such as Chichuapa. Michael Love's (1990, 1991) pioneer-
ing regional examination of the Rio Naruaca drainage extending inland from the sites of La Victoria and Salinas La Blanca confirmed the general absence of such motifs in ceramics until the Concho-phase (850-450 B.C.) development of La Blanca, a regional center, with monumental architecture, sculpture, and incised white and black ceramics carrying motifs of cloth-edge profile faces (850-650 BC; Blake et al. 1995:179-181). His excavations at La Blanca and regional-scale analysis demonstrated that these elements were restricted to La Blanca itself, and differentially distributed within it.

Clark's (1994:197-200) analysis of the Murutian region reached the same general conclusion, although here the local centers develop slightly earlier and thus have ceramic assemblages identifiable with Early Formative Conchos or the Murutian Formative Conchos. Where Chela complex ceramics are widely distributed in the region, and may be augmented with multiple centers, Conchos with its iconographically complex motifs is limited to a single regional center. Uneven distributions of "Olmec" motifs are in fact typical in all regions that have been thoroughly investigated. For Oaxaca, Flannery and Marcus (1994:329-339) documented differential distribution of motifs that they argued stems from three kinds of differences in patterns of ceramic consumption: status distinctions within communities; within-site symbolic differentiation that may reflect social groupings; and intra-regional differences between neighboring, but independent, communities. An example of La Blanca, at San Jose Mogote they found evidence that larger amounts of exotic materials such as jade, shell, iron ore, and copper are associated with the iconographically complex pottery vessels. Flannery and Marcus concluded that chronological distinctions are only one of the possible explanations; others should be considered for differences in the distribution of symbolically significant ceramic decoration.

The presence of complex vessels from Capan are precisely the kind of material that, elsewhere in Mesoamerica, is found only in association with particular kinds of sociopolitical involvements. The absence of such explicit symbolism from more monumen
tary assemblages at neighboring sites, even those that are well-studied, is not by itself sufficient reason to conclude that the introduction of these motifs was delayed. A similar explanation may be accounted for the absence of complex motifs from Chalchuapa's Tok ceramic complex. Scharff (1978:209) argues that Chalchuapa may have played a less central role in the region than an uninvestigated site near Azuela, located in a gap 25 km to the west, to which "Olmec"-style portable objects are attributed.

Most of the external comparisons drawn by Vliet for Gordon-phase vessels are to terminal Early Formative complexes. "Olmec" motifs found in some Guatemalan sites in slightly later contexts, for example, at La Blanca, are on vessels with diagnostic Mid-
Formative complex-vessel forms. The Gordon vessels, in contrast, are entirely comparable in form, surface treatment, and decoration to Early Formative complexes, as recently emphasized by Flannery and Marcus (1994:135, 382, 390), and noted previously by many others (Fash 1985, 1991; Marcus 1983, 1991; Marcus and Vliet 1989; Post 1985; Vothics and Kennett 1995). It is highly unlikely that Puerto Escondido is unique, and much more likely that the agricultural potential of lowland river valleys in Mesoamerica would have made them some of the most favorable locations—along with swamps and lacustrine environments—for early trans
tions to increased reliance on agriculture and to sedentism (Hester et al. 1996; Jacob 1995; Jacob and Hallmark 1996; Jones 1994; Pohl 1990; Pohl et al. 1996). It seems certain that other equally early villag
es exist elsewhere in eastern Mesoamerica. The identification of early settlements in areas of active river deposition may be difficult, but it is crucial to arriving at more accurate understandings of the early history of human occupation in Central America.

Acknowledgments. Excavations at Puerto Escondido were con
ducted under the authority of the Instituto Hondureno de Arqueologia e Historia. Funding was provided by grants from the Wenner-Gren Foundation for Anthropological Research, Henry Chuco Foundation, Foundation for the Advancement of Mesoamerican Studies, Incorporated, from the University of California, Los Angeles Research Faculty Endowment, Committee on Research, Center for Latin American Studies, and Undergraduate Research Apprenticeship Program; and from the Cornell University Office of Sponsored Programs, Latin American Studies Program, and Anthropology Program. We thank Jeremy A. Sotol for comments on an earlier draft.

References Cited
Andrews V.E. Wyllys, and Norman Hammond
Clark, John E. 1994. "Late Archaic Mesoamerica." In El Guachinango and Tamales Lomas, Mexico and Miahua.
ington, D.C.